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Caenorhabditis elegans: A Bridging 1 1
Model to Assess the Safety
of Nanomaterials

Nivedita Chatterjee

Abstract

This chapter focuses on the role of Caenorhabditis elegans as a bridging model
in nanotoxicology and nanosafety research. With its simple multicellular struc-
ture, well-characterized genetics, low maintenance costs, short life cycle, and
suitability for high-throughput screening, C. elegans is effective for evaluating
nanoparticle toxicity across various exposure scenarios, including acute and
chronic treatments. The chapter examines key physiological endpoints—such as
survival rates, growth, reproduction, and behavior—and employs mutant and
transgenic strains alongside advanced omics technologies to investigate the
molecular pathways affected by nanoparticle exposure, particularly oxidative
stress, genotoxicity, and neurotoxicity. By integrating multi-endpoint assess-
ments and behavioral investigations, C. elegans provides valuable insights into
the safety and potential risks of nanomaterials, contributing to a broader under-
standing of nanotoxicology in alignment with the ‘One Health’ framework.
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1 Introduction

The soil-dwelling, non-parasitic nematode Caenorhabditis elegans (C. elegans) has
been a foundational model organism in biological research since the 1970s when it
was first was first proposed as a model organism by Sydney Brenner in 1965 and
employed to study the genetic regulation of development (Tejeda-Benitez and
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Olivero-Verbel 2016; Brenner 2009; Avila et al. 2011). Its popularity has grown
significantly due to numerous advantages. These include its small size (approxi-
mately 1 mm in length for adults), rapid life cycle (about 3 days at 20 °C to reach
adulthood), short lifespan (around 2.5 weeks), self-fertilization capability, large
brood size (over 300 offspring per hermaphrodite), and ease of genetic manipulation
(Leung et al. 2008). The requirements for maintaining C. elegans in the lab are
minimal—ambient temperature, humidity, oxygen, and a bacterial food source—
making it a cost-effective and accessible model for research (Avila et al. 2011).

1.1 Ecology and Natural Environment

The nematode C. elegans thrives in environments rich in decaying organic matter,
such as rotting fruits and compost heaps, where it primarily feeds on bacteria. Its
population follows a “boom-and-bust” dynamic, increasing when food is abundant.
When resources are scarce, it enters the dauer stage, a dormant phase that enables
survival under harsh conditions and dispersal to new environments. C. elegans dem-
onstrates adaptability and plays a crucial role in nutrient cycling across various
habitats, including soil and decomposing plant material (Frézal and Félix 2015).

1.2 Anatomy and Tissues

C. elegans features a simple yet high differentiated anatomical structure. Adult her-
maphrodites consist of 959 somatic cells, while males possess 1031. Despite its
simplicity, C. elegans develops specialized tissues including muscle, hypodermis,
intestine, gonads, glands, an excretory system, and a nervous system composed of
302 neurons and their synapses (Sulston 1983; Avila et al. 2011) (Fig. 11.1).

1.2.1 Epidermis
The epidermis consists of a single layer of hypodermal cells, covered by a protective
cuticle.

1.2.2 Muscles
Body wall muscles are arranged into four quadrants, enabling the nematode’s char-
acteristic sinusoidal movement.

1.2.3 Digestive System
This system includes a pharynx, intestine, and anus, ensuring efficient nutrient
absorption.

1.2.4 Nervous System

The hermaphrodite’s nervous system contains 302 neurons and 56 glial cells, while
the male has 381 neurons. The complete neural network (connectome) has been
fully mapped, making C. elegans an excellent model for studying neural function,
development, and degeneration.
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Fig. 11.1 Anatomy of adult C. elegans hermaphrodite (schematic). (Figure created with
BioRender.com)

1.2.5 Reproductive System

Hermaphrodites have a bilobed gonad, each lobe containing an ovary, oviduct, and
spermatheca, while males have a single-lobed gonad with a vas deferens leading to
the cloaca.

1.3 Development and Reproduction

Mature oocytes pass through the spermatheca, where they are fertilized by sperm
from either the hermaphrodite or a male. The resulting zygote forms a tough chitin-
ous shell and vitelline membrane, rendering it impermeable to most solutes. Eggs
are typically retained in the uterus through the first few cleavages before being laid
around the time of gastrulation, approximately 3 h after fertilization. During
embryogenesis, cell division, organogenesis, and morphogenesis occur, resulting in
the first-stage larva. Post-embryonic development sees continuous growth, with
somatic cell nuclei increasing from 558 in the first-stage larva to 959 in adult her-
maphrodites (Avila et al. 2011; Ferreira et al. 2014).

Larval development proceeds through four stages (L1-L4), with significant cel-
lular differentiation occurring during each phase (Avila et al. 2011; Tejeda-Benitez
and Olivero-Verbel 2016). For example, certain proteins such as Cu*/Zn** superox-
ide dismutase and aspartyl proteinase are highly expressed in the L1 stage but
decrease as the nematode matures (Madi et al. 2003). By the L4 stage, gonadogen-
esis is complete, enabling reproductive capability. The entire life cycle, from egg to
reproductive adult, takes just 3.5 days at 20 °C. Under optimal conditions, the lifes-
pan of wild-type C. elegans is about 2.5 weeks (~18 days). In response to food
scarcity or high population density, an alternative dauer stage can form at the L2/L.3
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Fig. 11.2 Life cycle of C. elegans (schematic representation): relevance of different developmen-
tal stages to nanotoxicological study applications. (Created with BioRender.com)

molt. Dauers are resistant to desiccation and can survive up to 3 months without
developing further (Avila et al. 2011) (Fig. 11.2).

1.4 Reproduction

C. elegans exists as either hermaphrodite or male. Hermaphrodites can self-fertilize,
producing only hermaphrodite offspring, while cross-fertilization between her-
maphrodites and males produces both sexes in equal proportions. This unique
reproductive strategy is particularly useful for genetic studies. Hermaphrodites pos-
sess a bilobed gonad, while males have a single-lobed gonad that connects with the
cloaca near the tail. Males also have specialized structures in their tail for mating,
including 18 sensory rays and spicules that assist with sperm transfer during copula-
tion (Tejeda-Benitez and Olivero-Verbel 2016; Avilaet al. 2011; Ferreira et al. 2014).

1.5 Genome and Genetic Manipulation

The C. elegans genome, one of the first multicellular organisms to be fully
sequenced, consists of approximately 100 million base pairs and 20,000 genes
spread across six chromosomes. This wealth of genetic information is accessible
through databases such as WormBase. Various genetic techniques, including muta-
genesis, transgenesis, and RNA interference (RNA1i), are employed to study C. ele-
gans. Knockout mutant libraries and genetic manipulation tools, such as
GFP-tagging, have been particularly valuable for in vivo studies of cells and molec-
ular pathways (Avila et al. 2011; Chalfie et al. 1994).
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1.6 C. elegans as a Model in Biology

C. elegans has been instrumental in advancing biological research since its adoption
as a model organism. Key discoveries include the genetic mechanisms behind the
development, apoptosis, and neural function, with landmark achievements like the
complete mapping of its cell lineage, the sequencing of its genome, and the discov-
ery of RNA interference (RNAI). Its rapid life cycle, transparent body, and self-
fertilization simplify genetic studies and cellular observations, while its simple
maintenance makes it a cost-effective research tool. Despite its biological simplicity
compared to higher organisms, C. elegans continues to provide profound insights
into fundamental biological processes, driving breakthroughs in science and medi-
cine (Tejeda-Benitez and Olivero-Verbel 2016; Avila et al. 2011).

2 C. elegans—The Bridging Model Organism and Its
Applications in Toxicity Research

C. elegans became a preferred model for toxicity studies in the late 1990s, owing to
its low maintenance cost, short life cycle, and suitability for high-throughput screen-
ing (Helmcke et al. 2010; Avila et al. 2011). Unlike isolated cell cultures, C. elegans
provides a complete multicellular organism to assess whole-system responses to
toxicants. It possesses functional nervous, digestive, and reproductive systems,
offering insights into the holistic impact of toxin exposure. Its fully sequenced
genome allows for easy manipulation through RNA interference (RNAi) and muta-
genesis, and researchers can access thousands of transgenic and mutant strains from
the Caenorhabditis Genetics Center (Ferreira et al. 2014).

Toxicity assays typically test endpoints such as growth, reproduction, feeding,
and movement (Wu et al. 2019; Avila et al. 2011; Tejeda-Benitez and Olivero-Verbel
2016). Growth and reproduction are often more sensitive indicators than lethality
for many toxicants like polycyclic aromatic hydrocarbons (Sese et al. 2009). C. ele-
gans, especially transgenic strains, is extensively utilized as a bioindicator in eco-
toxicology, with a focus on sublethal conditions (Anbalagan et al. 2013; Lagido
et al. 2009). Its application is significant across both terrestrial and aquatic environ-
ments (Ellegaard-Jensen et al. 2012; Kuhn et al. 2021). Toxicant exposure can be
conducted on solid agar plates or in liquid media, providing flexibility in experi-
mental design and distinct advantages for toxicology assays. The transparent nature
of the worm’s cuticle eliminates the need for dissection, allowing researchers to
directly observe a wide range of endpoints and simplifying toxicity assessments. In
essence, C. elegans enables researchers to collect data on a whole living organism
using a methodology often similar to that of cell line monocultures (Ferreira
et al. 2014).

To evaluate the toxic effects of chemicals, researchers use various bioassays with
C. elegans. Typically, young adult worms are exposed to different concentrations of
the test substance in a liquid medium. The absence of food during these acute expo-
sures allows for a focused assessment of the chemical’s impact. For long-term
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Fig. 11.3 Key endpoints in toxicological assessments with the C. elegans model

studies, L1 larvae are exposed to the chemical in the presence of a food source such
as E. coli OP50. Toxicity endpoints in C. elegans encompass a wide range of biologi-
cal responses, including lethality, growth rate, locomotion, and reproductive capac-
ity. To gain deeper insights into the mechanisms of toxicity, molecular markers like
those for oxidative stress, gene expression, DNA damage, or green fluorescent pro-
tein (GFP) expression can be employed (Tejeda-Benitez and Olivero-Verbel 2016;
Wau et al. 2019). A classification of commonly used endpoints in C. elegans toxicity
research is presented in Fig. 11.3. This comprehensive approach enables the identifi-
cation of sensitive endpoints and the characterization of the toxicant’s mode of action.

2.1 Adaptability to High-Throughput, Automated Behaviour
System, and Genome-Wide Toxicity Screening

C. elegans is an ideal model organism for high-throughput screening due to its
adaptability to both aquatic and terrestrial environments, prolific reproduction, and
short life cycles. These features enable the analysis of toxicant effects through vari-
ous methods (Helmcke et al. 2010). Additionally, multi-endpoint, high-content
screening platforms have been developed and applied in various toxicity fields (Wu
etal. 2022; Jung et al. 2015). Automated tools such as the Biosort (Union Biometrica,
Inc.) and COPAS biosorter can analyze parameters like length, motion, fluores-
cence, and reproductive endpoints in 96-well plates (Shin et al. 2019; Helmcke et al.
2010). Furthermore, microfluidic devices and robotic systems improve the precision
of worm manipulation and immobilization for imaging and microsurgery (Hulme
et al. 2007; Mondal et al. 2016; Rohde et al. 2007).

Computer-based assays also offer automated readouts for assessing toxicant
impacts on behaviors like thrashing, fluorescence, and developmental endpoints
such as egg-laying, dauer formation, and lifespan in wild-type, mutant, and
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transgenic worms (Buckingham and Sattelle 2009; Rohde et al. 2007; Leung et al.
2011; Rahman et al. 2020).

Genome-wide screens for molecular contributors to toxicity, using methods such
as microarray, RNA sequencing, RNAIi screening, and transgenic approaches, have
identified genes involved in toxicant responses (McElwee et al. 2013; Chatterjee
et al. 2017; Kim et al. 2017a, 2020a, b). Thus, C. elegans offers efficient, high-
throughput capabilities for studying toxicant effects, supported by advanced genetic
tools and automated technologies.

The C. elegans model holds promise for connecting in vivo and in vitro
approaches (Kaletta and Hengartner 2006; Chakravarty 2022). It addresses the chal-
lenges of mammalian models by providing a more affordable, efficient, and ethi-
cally favorable alternative. Additionally, C. elegans features a fully sequenced
genome, the availability of transgenic knock-out mutants, and compatibility with
high-throughput automation techniques. Despite its evolutionary distance from
humans, C. elegans shares many conserved metabolic pathways and gene homologs
with humans, enabling in-depth analysis of these shared mechanisms. This makes
C. elegans a key model for bridging both in vitro and in vivo systems, as well as for
advancing research on human and environmental health, aligning with the ‘One
Health’ framework (von Mikecz 2022).

3 C. elegans in the Field of Nanotoxicology
and Nanosafety

The toxicological potential of engineered nanoparticles (ENPs) has become a grow-
ing concern due to their significant release into the environment, positioning them
among the group of emerging contaminants. Despite their widespread application in
medical and clinical settings, the interactions between these nanomaterials and bio-
logical systems are not yet fully understood. This nano-bio interaction knowledge
gap has prompted extensive studies using various biological models, including
C. elegans (Table 11.1). Utilizing C. elegans allows researchers to explore the fate
and toxicity of NPs within a multicellular organism. C. elegans proves to be a valu-
able model for assessing NP toxicity across different exposure scenarios, including
acute, prolonged, and chronic treatments through oral ingestion, topical application,
or microinjection. The model supports the evaluation of numerous endpoints, such
as physiological effects like average body length and brood size, which indicate
developmental and reproductive health. Furthermore, C. elegans facilitates the
study of molecular mechanisms by employing biological markers like gene expres-
sion, green fluorescent protein (GFP) reporters, and application of specific mutant
strains which provide insights into the specific pathways and mechanisms affected
by NP exposure (Tejeda-Benitez and Olivero-Verbel 2016; Wu et al. 2019; Gonzalez-
Moragas et al. 2015a). The efforts are in line with high throughput screening for
several nanomaterials with various doses to target several physiological endpoints
(Jung et al. 2015).
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3.1 General Physiological Endpoints Assessment

3.1.1 Survival/Mortality

In C. elegans, assessing survival rates is a primary approach for understanding the
toxicity of nanoparticles (NPs). Mortality is usually determined by constructing
concentration-response curves, which reflect how different doses of NPs influence
the death rate of the nematodes (Gonzalez-Moragas et al. 2015a; Tejeda-Benitez
and Olivero-Verbel 2016). A critical aspect of this evaluation is distinguishing
between lethality and paralysis. While death is indicated by the complete cessation
of movement and physiological activity, paralysis refers to immobility where nema-
todes still exhibit basic life functions, such as normal pharyngeal pumping (Wang
2018). This distinction is crucial to avoid overestimating the toxic effects of NPs
based on immobility alone.

3.1.2 Growth and Development

Growth and developmental outcomes in C. elegans provide important sublethal
endpoints for assessing NP toxicity. One key indicator of developmental progress is
the body length of nematodes, as exposure to NPs can delay their growth, especially
at early stages like the first and second larval stages (Hu et al. 2018a, b). The inhibi-
tion of growth is often associated with disruptions in key biological processes, such
as the endocytic process, which plays a significant role in mitigating NP-induced
stress. For example, studies suggest that normal lysosomal function is vital for nem-
atode growth under stress from silver nanoparticles (AgNPs) (Maurer et al. 2016).
Additionally, NP toxicity may reduce the availability of food or reduces the food
sensation which can further hinder growth by limiting nutrient intake (Meyer et al.
2010; Wang et al. 2023b).

3.1.3 Reproduction

Reproductive health is one of the most sensitive indicators of NP toxicity in C. ele-
gans, often affected at lower concentrations than those that impair survival or move-
ment. Reproductive toxicity is measured by comparing the reproductive capabilities
of NP-exposed nematodes to a control group, focusing on factors such as the num-
ber of offspring, brood size, and rate of egg laying (Kong et al. 2017; Zhao et al.
2016a). A decline in reproductive output, often reflected in reduced brood size or
increased sterility, is a common observation following NP exposure. In particular,
nanoparticles like ZnO and graphene oxide (GO) have been found to induce damage
in the gonads of nematodes through mechanisms such as germline apoptosis and
cell cycle arrest, which are triggered by DNA damage (Zhao et al. 2016a; O’Donnell
et al. 2017). Furthermore, NP-induced damage may not be confined to a single gen-
eration; reproductive abnormalities can be passed down to future generations. For
instance, after exposure to AuNPs, the F2 generation exhibited significant reproduc-
tive system abnormalities, though these effects gradually diminished by the F4 gen-
eration, suggesting an adaptive response across generations (Kim et al. 2013).
Similar multi-generational studies’ impact underscores the need to consider long-
term reproductive effects in NP toxicity studies (Contreras et al. 2013; Moon
et al. 2017).



11 Caenorhabditis elegans: A Bridging Model to Assess the Safety... 295

3.1.4 Behavioural Alterations

Behavioral changes in response to environmental stressors, including chemicals and
pollutants, have long been recognized as critical indicators of organismal and eco-
logical health. Various environmental contaminants can adversely affect an organ-
ism’s behavior, influencing key activities such as feeding, locomotion, reproduction,
and cognitive functions. These behavioral disruptions can cascade into broader eco-
logical consequences, affecting species interactions, predator-prey dynamics, and
ecosystem balance. However, behavioral studies have been underrepresented in
regulatory ecotoxicology, primarily due to a lack of standardized methods for
assessing these effects (Ford et al. 2021). The growing understanding of how envi-
ronmental stressors alter behavior has emphasized the need for including behavioral
metrics in risk assessments to better capture the full scope of toxicity.

When it comes to nanoparticle (NP) exposure, behavioral toxicity has been
extensively studied in C. elegans, a key model organism. Nanomaterials such as
AL:OsNPs, CdTe QDs, oleic acid-coated AgNP impair both locomotion and learning
abilities in C. elegans, indicating neurotoxic effects (Contreras et al. 2014; Wu et al.
2015; Li et al. 2012). Feeding behavior is also disrupted, with nanoparticles like
CdTe QDs and Zein-NPs altering pharyngeal pumping speed, RMEs motor neu-
rons, and defecation cycles, which can lead to increased fat storage (Zhao et al.
2015; Lucio et al. 2017). Moreover, chronic exposure to graphene-based NPs causes
a significant reduction in crawling distance, mean speed, and bending reversal fre-
quency, all of which indicate a loss of motor coordination and balance (Li et al. 2017).

3.2 Mechanistic Endpoints Evaluations

3.2.1 Application of Mutants and Transgenic C. elegans Strains

The use of reverse genetics allows precise manipulation of gene activity in C. ele-
gans, enabling researchers to target any gene in the organism. Tools like small inter-
fering RNAs (siRNAs) are valuable for studying the function of single genes in
C. elegans. Additionally, the extensive library of transgenic, mutant, and reporter
strains from the C. elegans consortium offers a valuable resource for studying
nanoparticle toxicity. Researchers can use these strains to explore molecular path-
ways, cellular responses, and genetic variations, providing insights into toxicity
mechanisms. Various phenotypic effects, including survival, growth, reproduction,
and lifespan changes, have been examined in both wild-type and mutant strains in
nanotoxicology studies (Rogers et al. 2015; Wang et al. 2017; Qu et al. 2018;
Chatterjee et al. 2017). Moreover, transgenic C. elegans strains that replicate human
molecular disease mechanisms, which are difficult to study in other models, are
utilized to assess the toxic effects of nanoparticles (NPs) in organisms affected by
chronic conditions like neurodegenerative diseases. For instance, Soria et al. dem-
onstrated that silver nanoparticles (AgNPs) had a more severe impact on movement
and oxidative stress in C. elegans strains mimicking Alzheimer’s disease than in
wild-type strains (Soria et al. 2015).
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3.2.2 OMICS Platforms for Gene Expression and Toxicity Pathways
Transcriptomics is a powerful tool to study large-scale gene expression changes in
C. elegans exposed to NPs. Various studies have shown that exposure to NPs affects
genes involved in oxidative stress, metal detoxification, DNA damage, endocytosis,
and intestinal integrity, with the extent of these effects dependent on the concentra-
tion and exposure duration (Starnes et al. 2019; Tsyusko et al. 2012; Hunt et al.
2014; Rocheleau et al. 2015; Gonzalez-Moragas et al. 2017b). Integrating transcrip-
tomics data with proteomics and metabolomics provides a comprehensive under-
standing of how NPs influence biological processes, contributing to the development
of adverse outcomes relevant to risk assessment (Eom et al. 2015; Ratnasekhar et al.
2015). The combination of multiple OMICS techniques allows a more detailed
mapping of NP-induced biological changes at various levels of organization,
enabling researchers to link molecular alterations with functional outcomes in
C. elegans.

3.2.3 Oxidative Stress, Innate Immunity, and Signalling
Pathway Alterations

Oxidative stress is considered a key mechanism through which NPs cause toxicity
in C. elegans. The accumulation of reactive oxygen species (ROS) in NP-treated
nematodes has been linked to adverse outcomes such as reduced lifespan, impaired
growth, and reproductive damage, in a dose- and time-dependent manner (Wu et al.
2012a, b; Ahn et al. 2014; Eom et al. 2013; Lim et al. 2012; Yu et al. 2011; Li et al.
2012). Excessive ROS generation can lead to functional defects even in organs that
do not retain NPs, such as reduced locomotion and reproductive issues. Interestingly,
pre-treatment with antioxidants like ascorbate or N-acetyl-l-cysteine (NAC) can
mitigate these effects (Wu et al. 2013; Lim et al. 2012; Li et al. 2012).

Several signalling pathways, including mitochondrial complex I and MAPK
pathways, have been identified as critical regulators in controlling NP-induced oxi-
dative stress and toxicity (Lim et al. 2012; Li et al. 2020; Teng et al. 2024; Eom et al.
2013). Additionally, genes like sod-3, gst-4, and hsp-16, which are associated with
stress responses, have been highlighted as sensitive markers for NP toxicity (Li
et al. 2012; Zhao et al. 2015; Rui et al. 2013; Wu et al. 2014b).

The exposure of C. elegans to nanoparticles (NPs) leads to significant alterations
in multiple signalling pathways, which are essential for understanding the mecha-
nisms of NP-induced toxicity. One key pathway is the Wnt signaling pathway,
where ligands like CWN-1, CWN-2, and LIN-44 regulate NP toxicity by control-
ling NP accumulation, with mutations in these genes either increasing resistance or
susceptibility (Zhi et al. 2016; Chatterjee et al. 2017). Similarly, the insulin/IGF-1
pathway, particularly through the DAF-2/DAF-16 axis, is involved in longevity and
stress resistance, with miRNAs such as mir-355 modulating NP toxicity via insulin
signalling (Zhao et al. 2016b). Additionally, the TGF-f pathway is implicated in
reproductive toxicity, where disruption by NPs, such as titanium dioxide, causes
damage to reproductive capacity and developmental processes (Kim et al. 2017a).

The MAPK signalling pathway is also critical in stress responses. In particular,
the p38 MAPK-SKN-1/Nrf cascade is involved in the innate immune response,
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offering protection against oxidative stress induced by NPs like graphene oxide
(Zhao et al. 2016¢). Chronic GO exposure impairs immune function by causing the
accumulation of pathogenic microbes like OP50 in the intestine, which disrupts
innate immunity. However, surface modification, such as PEG, reduces this toxicity
(Wu et al. 2014a). GO also activates the p38 MAPK pathway, with PMK-1 playing
a key protective role, while amino-functionalized GO shows less immunotoxicity,
highlighting the importance of nanoparticle modification (Rive et al. 2019). AgNPs
trigger oxidative stress and activate PMK-1, leading to immune defence responses
(Lim et al. 2012). The ERK signalling pathway is also involved in regulating GO
toxicity, working in synergy with p38 MAPK to control immune responses (Qu
et al. 2017). Additionally, ZnO-NPs suppress innate immunity regulated by SKN-1/
Nrf and the p38 MAPK signalling pathway, decreasing survival during infection
and downregulating key immune genes (Li et al. 2020).

3.2.4 Neurotoxicity and Neurodegeneration

Nearly all behavioural endpoints in C. elegans—such as locomotion, body bending,
feeding, defecation, pharyngeal pumping, egg-laying, sensory perception, learning,
and memory—are controlled by the nervous system and achieved through muscle
contractions. Exposure to nanoparticles (NPs) has been shown to disrupt these
behaviours. For instance, a reduction in feeding and defecation behaviours is often
linked to NP-induced stress and alterations in pharyngeal pumping and defecation
cycles (Wu et al. 2015). CdTe quantum dots (QDs), graphene-based nanomaterials,
and copper oxide nanoparticles have been found to cause significant damage to
dopamine and glutamatergic neurons in C. elegans, leading to abnormal feeding
behaviour developmental deficits, neurodegeneration, and abnormalities in the neu-
ral network (Zhao et al. 2015; Mashock et al. 2016; Li et al. 2017). Nanoparticles
like silver (AgNPs) have been shown to impair a range of neuronal systems, includ-
ing dopaminergic, GABAergic, and cholinergic neurons, affecting locomotion and
sensory perception. The severity of these effects depends on both the dose and dura-
tion of exposure (Zhang et al. 2021). Additionally, hybrid nanoparticles such as
Fe;0.@Ag-NPs have been linked to neurotoxicity by disrupting cholinergic neu-
rons and inducing oxidative stress, leading to behavioural impairments and apopto-
sis in C. elegans (Silva et al. 2023). Graphene oxide (GO) NPs also exhibit
considerable neurotoxicity. GO exposure causes damage to AFD sensory neurons,
reduces neurotransmitter levels such as dopamine, GABA, and tyramine, and leads
to altered locomotion behaviors like reduced speed and coordination (Kim et al.
2020a). Silica (SiO-) nanoparticles have also shown neurotoxic effects, particularly
in disrupting serotonergic neurotransmission. These impairments are associated
with neuromuscular defects, notably affecting the egg-laying apparatus in C. ele-
gans, which can be mitigated by anti-amyloid compounds (Scharf et al. 2016). This
indicates that SiO2 NPs can interfere with reproductive and muscular systems, com-
pounding their neurotoxic effects. Additionally, exposure to titanium dioxide (TiO2)
NPs has been linked to neuron damage and impaired locomotion, further highlight-
ing the broad toxicological impact of various nanomaterials (Hu et al. 2018a).
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3.2,5 Genotoxicity, Mutation, DNA Damage Response,
and Apoptosis

Genotoxicity in C. elegans can be assessed through several established techniques.
Methods like qQPCR measure DNA damage by detecting how lesions inhibit poly-
merase progression, with the extent of damage indicated by the length of the PCR
products (Leung et al. 2010). The comet assay has been used to evaluate the geno-
toxicity of environmental pollutants (Imanikia et al. 2016). Additionally, transgenic
strains like hus-1::GFP are utilized to visualize DNA double-strand breaks, where
fluorescent foci in gonadal germ cells indicate the extent of damage, allowing pre-
cise quantification (Wang et al. 2014; Hofmann et al. 2002). These methods provide
a clear understanding of the DNA damage response, involving checkpoint activation
that leads to either cell cycle arrest or repair or, in severe cases, apoptosis (Gartner
et al. 2004; Craig et al. 2012).

Nanoparticles, particularly silver nanoparticles (AgNPs), graphene oxide (GO),
and zinc oxide nanoparticles (ZnO NPs), have been shown to induce significant
genotoxicity in C. elegans. Smaller, uncoated AgNPs, for example, cause oxidative
stress that leads to mitochondrial membrane damage and oxidative DNA damage,
such as 8-OHdG lesions (Ahn et al. 2014). This oxidative DNA damage triggers the
activation of DNA repair mechanisms, such as DNA glycosylases like NTH-1,
which specifically repair oxidative lesions. PMK-1, a p38 MAPK homolog, also
plays a protective role in mitigating AgNP-induced DNA damage through repair
pathways (Chatterjee et al. 2014a). Similarly, GO nanoparticles activate key compo-
nents of the apoptosis pathway, such as cep-1 (a homolog of p53), egl-1, ced-4, and
ced-3, which either arrest the cell cycle or induce apoptosis when DNA damage
becomes too severe to repair, highlighting the role of these pathways in maintaining
genomic integrity (Zhao et al. 2016a). Surface modifications, such as coating GO
nanoparticles with bovine serum albumin (BSA), have been shown to reduce the
activation of DNA damage checkpoints and apoptosis-related genes, thus lowering
toxicity (Sivaselvam et al. 2020). Furthermore, prolonged exposure to AgNPs over
multiple generations has been linked to the accumulation of DNA damage, insuffi-
cient repair activation, and the inheritance of reproductive and developmental
defects (Wamucho et al. 2019). Similarly, ZnO NPs disrupt germ cell development,
triggering apoptosis through DNA damage checkpoints and causing chromosomal
deletions, which impair reproductive capacity (Wang et al. 2023a).

3.2.6 Epigenetic Biomarkers

Emerging research suggests that epigenetic mechanisms, particularly microRNAs
(miRNAs), play crucial roles in mediating protective or harmful responses in C. ele-
gans exposed to NPs. For example, prolonged exposure to graphene oxide (GO)
was shown to significantly affect miRNA-regulated biological processes like devel-
opment, reproduction, and cell cycle regulation (Wu et al. 2014d). Certain miRNAs,
such as mir-259 and mir-360, have been identified as key players in protecting
against NP-induced oxidative stress and DNA damage in nematodes (Zhuang et al.
2016; Zhao et al. 2016a). Furthermore, miRNA-mRNA interaction networks,
including the regulation of mir-355 with the DAF-2/insulin receptor, have been
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linked to the modulation of NP toxicity in C. elegans (Zhao et al. 2016b). Similarly,
long non-coding RNAs (IncRNAs) have been implicated in controlling NP toxicity,
further emphasizing the importance of epigenetic regulation in the organism’s
response to environmental stressors (Wu et al. 2016b).

3.3 Factors Affecting the Nano-Bio Interaction in C. elegans

3.3.1 Exposure

When assessing the toxicity of nanoparticles, it is crucial to consider both exposure
concentration and duration. Researchers often use exposure ranges from non-toxic
to threshold levels to establish dose-effect relationships. However, creating a precise
dose tolerance curve for a specific nanoparticle is challenging due to variations in
study conditions. Lower-order developmental stages, such as L1 larvae, are typi-
cally more sensitive than later stages, such as young adults. Moreover, longer expo-
sure times generally lead to more severe effects compared to shorter ones, though
hormesis effects observed in short-term exposures may diminish with prolonged
exposure (Tyne et al. 2015). Additionally, intermittent exposure can sometimes pro-
duce more pronounced effects than continuous exposure, highlighting the impor-
tance of considering both exposure time and historical exposure in toxicity
evaluations (Moon et al. 2017).

Nanoparticles often exhibit unstable behaviour in liquid media, such as
K-medium and S-medium, where they can aggregate to sizes over 100 times their
original dimensions and precipitate, thus reducing the effective exposure dose to
organisms. Additionally, some metal nanoparticles in liquid media may partially
dissolve or release ions due to hydration kinetics, complicating toxicity assess-
ments. While the release of metallic ions is believed to contribute to observed toxic-
ity, it remains unclear whether the effects are due to the particles themselves or the
ions. Researchers suggest that simulated soil pore water (SSPW) provides a more
realistic testing environment for metal nanoparticle toxicity in C. elegans due to its
low ionic strength and organic content, which stabilize the nanoparticles (Tyne et al.
2013). In contrast, applying nanomaterials to whole NGM agar media can affect the
effective exposure dose because the worms interact only with the solid surface of
the NGM, not with the entire medium. Mixing nanoparticles with viable E. coli
OP50, used as food, can alter nanoparticle transformation and toxicity evaluations.
Applying a mixture of deactivated E. coli and selected nanomaterials spread over
the surface of solid NGM plates as a lawn provides a more reliable exposure medium
by minimizing biotransformation and enhancing nano-bio interactions, as demon-
strated for diesel exhaust particles (Chatterjee et al. 2024). Additionally, semi-fluid
nematode growth gelrite medium (Dengg and van Meel 2004) is suitable for
nanoparticle toxicity evaluation compared to standard nematode growth medium
(NGM) and K-medium, with Ag-NPs demonstrating stability in NGG without
increased dissolution of Ag ions over time (Luo et al. 2017). Therefore, the choice
of exposure medium—Iiquid, solid, or bacterial suspension—plays a crucial role in
determining the effective concentration and toxicity of nanoparticles, underscoring
the need for standardized testing protocols.
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3.3.2 Physiochemical Properties of Nanomaterials

The physicochemical properties of nanomaterials, such as size, shape, surface mod-
ification, and charge, significantly influence their toxicity and biological interac-
tions. These properties can affect how nanomaterials are absorbed, distributed, and
accumulated within organisms, ultimately impacting their potential health risks and
environmental effects.

Size

The correlation between nanoparticle size and toxicity is significant, with smaller
nanoparticles generally causing more severe effects in C. elegans compared to
larger ones. Smaller particles can penetrate more easily, leading to increased toxic-
ity (Khare et al. 2015; Roh et al. 2010), possibly through mechanisms such as altera-
tions in metabolic pathways (Ratnasekhar et al. 2015) or the formation of aggregates
that limit food availability (Luo et al. 2016). However, the same study suggests that
larger particles may accumulate more within the body, potentially causing long-
term effects such as reduced lifespan, while impaired reproductive capacity was
observed with smaller particle exposure (Contreras et al. 2014). The impact of
nanoparticle size on toxicity is complex and may depend on factors such as agglom-
eration state and particle-specific effects (Jung et al. 2015).

Coating and Surface Modification

Surface modifications and coatings can significantly influence the toxicity of
nanoparticles. Sulfidized silver nanoparticles (AgNPs), for example, exhibit reduced
toxicity compared to uncoated AgNPs due to decreased solubility and limited silver
ion release, which lowers their bioavailability and particle-specific toxicity (Starnes
et al. 2015). Similarly, citrate coatings on AgNPs reduce silver ion availability,
although they are less effective than BSA coatings (Yang et al. 2012; Hunt et al.
2014; Meyer et al. 2010). CdTe quantum dots (QDs) with ZnS coatings, unlike bare
CdTe QDs, did not translocate into motor neurons, thereby avoiding neurotoxicity
(Zhao et al. 2015). Surface modifications such as hydroxylation, carboxylation, and
amination have also reduced the reproductive toxicity of multi-walled carbon nano-
tubes (MWCNTSs), especially carboxylation, which might facilitate the elimination
of functionalized MWCNTs than the pristine one (Chatterjee et al. 2014b).
Additionally, PEG modification, commonly used in nanoparticles, effectively miti-
gates the negative effects of graphene oxide (GO) on both primary and secondary
target organs (Wu et al. 2016b). However, some coatings, like gum arabic, can
increase nanoparticle toxicity, while others, such as polyvinylpyrrolidone (PVP),
show conflicting results, with studies reporting both higher and lower toxicity com-
pared to uncoated nanoparticles (Bone et al. 2015; Yang et al. 2012; Ellegaard-
Jensen et al. 2012; Ahn et al. 2014).

Charge

Positively charged nanoparticles tend to be more toxic to C. elegans and accumulate
more than neutral or negatively charged particles. This increased toxicity and bioac-
cumulation are observed in most cases, highlighting the importance of particle
charge in toxicity assessments (Collin et al. 2014; Arndt et al. 2017).
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Shape

The shape of nanoparticles can influence their toxic effects in C. elegans. For exam-
ple, different shapes of TiO, nanoparticles exhibit varying effects on pharyngeal
function, reproduction, and larval growth (Iannarelli et al. 2016). Anatase-TiO, had
a stronger impact on metabolic pathways compared to rutile, while rutile-TiO, influ-
enced developmental processes more significantly (Rocheleau et al. 2015). Silver
nanocubes generally show lower toxicity compared to quasi-spherical silver
nanoparticles and silver nanowires, indicating that shape engineering can optimize
nanoparticle properties while minimizing adverse effects (Gorka et al. 2015).
Additionally, the crystalline structure could explain the differences in agglomera-
tion behaviour observed in the intestine, which in turn influenced the reproductive
toxicity of the TiO, material (Angelstorf et al. 2014).

3.3.3 Other Factors

Environmental factors such as UV irradiation can enhance the toxicity of metal
oxide nanoparticles like ZnO and TiO, through mechanisms such as photocatalytic
ROS generation and photo-enhanced dissolution (Ma et al. 2011, 2014; Lee and An
2013). Moreover, the stability and toxicity of nanoparticles are influenced by dis-
solved organic matter and the physiological properties of the test organism, such as
pH and biomolecular interactions within the intestinal lumen (Gonzalez-Moragas
et al. 2017a). Variations in toxicity may also result from differences in material
formulation, nematode life stage, and testing procedures (Ma et al. 2013).

4 Conclusion and Perspectives

C. elegans has proven to be an effective and versatile model in nanotoxicology stud-
ies, particularly for initial biological screenings of nanoparticles (NPs). Its small
size, low cost, and short lifespan facilitate large-scale, long-term toxicity assess-
ments under controlled conditions, making it ideal for chronic exposure studies
(Leung et al. 2008). Additionally, the transparency of C. elegans enables straightfor-
ward observation of NPs at both molecular and cellular levels, especially when
using transgenic strains that express fluorescent markers (Scharf et al. 2013).
Advances such as microfluidic chip platforms further enhance its utility, offering a
high-throughput, on-site system for rapidly assessing NP uptake and toxicity while
reducing labor and time requirements (Mondal et al. 2016; Rohde et al. 2007).
These features, along with the nematode’s genetic tractability and the conservation
of many molecular pathways with humans (Kaletta and Hengartner 2006; Markaki
and Tavernarakis 2020), make C. elegans a robust platform for nanotoxicology
research (Wu et al. 2019).

Nevertheless, C. elegans has inherent limitations when used in nanotoxicology
studies, particularly in comparison to mammalian models. For example, it lacks key
mammalian organs such as the heart, kidneys, bones, and eyes, rendering it unsuit-
able for evaluating NP toxicity in these organ-specific systems. Additionally, the
absence of a circulatory system restricts its ability to mimic intravenous NP expo-
sure scenarios (Tejeda-Benitez and Olivero-Verbel 2016).
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Despite these limitations, C. elegans continues to excel as a bridging model
between ecological and human health risk assessments, aligning well with the 3R
principles (Replacement, Reduction, and Refinement) and New Approach
Methodologies (NAMs). By connecting in vitro and in vivo assessments, it supports
more ethical, cost-effective, and efficient toxicity testing. Its capacity to evaluate a
range of endpoints—including lethality, growth, reproduction, fertility, and locomo-
tion—makes it invaluable for early-stage evaluations of nanomaterials. Furthermore,
as a fully sequenced organism with high genetic tractability, C. elegans offers the
added benefit of creating transgenic strains to study gene expression changes in
response to toxicants and nanomaterials. This capability allows researchers to gain
mechanistic insights into gene regulation and biochemical pathways affected by
pollutants, toxicants, and nanoparticles. By observing direct molecular responses,
such as changes in gene expression, C. elegans helps uncover the biological mecha-
nisms underlying toxicity at various levels—from single-cell interactions to whole-
organism responses. Consequently, C. elegans remains a highly effective and
versatile model for advancing nanotoxicology, providing critical data that can
enhance the safety and regulation of emerging nanomaterials.
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